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Abstract There are non-Gaussian time series that admit a causal linear autoregressive mov-
ing average (ARMA) model when regressing the future on the past, but not when regressing
the past on the future. The reason is that, in the latter case, the regression residuals are not
statistically independent of the regressor. In previous work, we have experimentally verified
that many empirical time series indeed show such a time inversion asymmetry.

For various physical systems, it is known that time-inversion asymmetries are linked
to the thermodynamic entropy production in non-equilibrium states. Here we argue that
unidirectional linearity is also accompanied by entropy generation.

To this end, we study the dynamical evolution of a physical toy system with linear cou-
pling to an infinite environment and show that the linearity of the dynamics is inherited by
the forward-time conditional probabilities, but not by the backward-time conditionals. The
reason is that the environment permanently provides particles that are in a product state
before they interact with the system, but show statistical dependence afterwards. From a
coarse-grained perspective, the interaction thus generates entropy. We quantitatively relate
the strength of the non-linearity of the backward process to the minimal amount of entropy
generation.

The paper thus shows that unidirectional linearity is an indirect implication of the ther-
modynamic arrow of time, given that the joint dynamics of the system and its environment
is linear.

Keywords Arrow of time · Entropy production · Irreversible processes · Time series ·
ARMA models

1 Unidirectional Linearity in Time Series

To study the implications and the different versions of the thermodynamic arrow of time has
attracted interest of theoretical physicists and philosophers since a long time [1–7]. More

D. Janzing (�)
Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany
e-mail: dominik.janzing@tuebingen.mpg.de

D. Janzing (�)
e-mail: janzing@ira.uka.de

mailto:dominik.janzing@tuebingen.mpg.de
mailto:janzing@ira.uka.de


768 D. Janzing

specifically, it is the question how the difference between time reversibility of microscopic
physical dynamics is consistent with the existence of irreversible processes on the macro-
scopic level. The most prominent examples of irreversibilities (e.g. heat always flows from
the hot to the cold reservoir, never vice versa, every kind of energy can be converted into
heat, but not vice versa) can directly be explained by the fact that the processes generate
entropy and their inverted counterpart is therefore forbidden by the second law.

Here we describe an asymmetry between past and future whose connection to the second
law is more subtle. An extensive analysis of more than 1000 time series [8] showed that
there are many cases where the statistics could be better explained by a linear autoregressive
model from the past to the future and fewer cases where regressing the past on the future
yields a better model [8, 9]. The goal of this paper is to describe how this asymmetry is con-
nected to non-equilibrium thermodynamics. It has been shown for various physical models
(e.g. [10–12], and also in a more abstract setting [13]) that statistical asymmetries between
past and future can be related to thermodynamic entropy production.1

This paper does not focus on general time-asymmetries between past and future, but only
on the unidirectional linearity observed in our experiments. To link this phenomenon to the
entropy production we will try to use only those assumptions about the underlying physical
system that are necessary to make the case and try to simplify the argument as much as
possible. The ingredients are (1) a system interacting with an environment consisting of
infinitely many copies of the same system where the joint system is initially in a product
state, each copy having an abstract vector space as phase space, (2) linear volume preserving
dynamical equations for the joint system. We will not refer to any other ingredients from
physics, like energy levels, thermal Gibbs states, etc. Of course, this raises the question of
how to define entropy production. Here, we interpret the generation of statistical dependence
among an increasing number of particles as a phenomenological entropy production because
the sum of the Shannon entropies of the particles increases.

To describe the model more precisely, we start with preliminary remarks on statistical
dependence. First we introduce the following terminology.

Definition 1 (Linear Models) The joint distribution PX,Y of two real-valued random vari-
ables X and Y is said to admit a linear model X → Y with additive noise (linear model, for
short) if Y can be written as

Y := αX + ε

with a structure coefficient α ∈ R and a noise term ε that is statistically independent of X

(X ⊥⊥ ε, for short).

It should be emphasized that statistical independence between two random variables
Z,W is defined by factorizing probabilities

PZ,W = PZ ⊗ PW,

1It should be mentioned, however, that some authors (e.g. [14]) define “entropy production” by a relative
entropy distance between a forward and a backward stochastic process. This is motivated by the fact that the
relative entropy distance has been shown to coincide with an increase of thermodynamic entropy for various
physical models. Since we are not aware of any model studied in the literature that is sufficiently general to
include the system described in this paper, we will not, a priori, assume such a connection between asymmetry
and entropy generation.
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instead of the weaker condition of uncorrelatedness, which is defined by factorizing expec-
tations:

E(ZW) = E(Z)E(W). (1)

Uncorrelatedness between X and ε is automatically satisfied if α is chosen to minimize the
least square error. Whether or not PY,X admits a linear model from X to Y is actually a prop-
erty of the conditional PY |X alone (provided that the conditional distribution P (Y |X = x) is
defined for all x ∈ R). We will therefore also say that the conditional PY |X admits a linear
model.

Except for the trivial cases of independence or deterministic dependence, PX,Y can only
admit linear models in both directions at the same time if it is bivariate Gaussian. This can
be shown using the theorem of Darmois and Skitovich [15, 16], which we rephrase now
because it will also be used later.

Lemma 1 (Theorem of Darmois & Skitovich) Let Y1, Y2, . . . , Yk be statistically indepen-
dent random variables and the two linear combinations

W1 :=
k∑

j=1

β
(1)
j Yj ,

W2 :=
k∑

j=1

β
(2)
j Yj

be independent. Then all Yj with β
(1)
j β

(2)
j �= 0 are Gaussian.

In the context of inferring causal directions from statistical data, it has been proposed to
consider the direction of the linear model as the causal direction [17, 18]. In [8] we have
shown that the same idea can be used to solve the following binary classification prob-
lem: Given numbers X1,X2,X3, . . . that are known to be the values of an empirical time
series in their correct or in their time reversed order. Decide whether X1,X2,X3, . . . or
. . . ,X3,X2,X1 is the correct order. Certainly, this problem is less relevant than the problem
of inferring causal directions since our experiment required to artificially blur the true di-
rection even though it was actually known. The motivation for our study was to test causal
inference principles by applying them to this artificial problem.

To explain the “time direction inference rule” proposed in [8] we first introduce an im-
portant class of stochastic processes [19]:

Definition 2 (ARMA Models) We call a time series (Xt )t∈Z an autoregressive moving av-
erage process of order (p, q) if it is weakly stationary and there is an iid noise εt with mean
zero such that

Xt =
p∑

i=1

φiXt−i +
q∑

j=1

θj εt−j + εt ∀t ∈ Z,

where φi and θj are real-valued coefficients and εt is independent of all Xt ′ with t ′ < t . For
q = 0 the process reduces to an autoregressive process and for p = 0 to a moving average
process. The short-hand notations are ARMA(p, q), AR(p), and MA(q). The first and the
second sums are called the AR-part and the MA-part, respectively.



770 D. Janzing

The process is called causal2 if

εt ⊥⊥ Xt−i ∀i > 0. (2)

Note that a process is called weakly stationary if the mean E(Xt ) and second order mo-
ments E(XtXt+h) are constant in time [19]. In [8] we have shown the following theorem:

Theorem 1 (Non-invertibility of Non-Gaussian Processes) If (Xt )t∈Z is a causal ARMA
process with non-vanishing AR-part, then (X−t )t∈Z is a causal ARMA process if and only if
(Xt ) is a Gaussian process.

In particular, a process with long-tailed distributions like e.g. Cauchy can only be causal
in one direction (provided that it has an AR-part). In [8] we have postulated that whenever a
time series has a causal ARMA model in one direction but not the other the former is likely
to be the true one. Our experiments in [8] support this hypothesis, but we want to give the
reader the opportunity to judge the strength of the evidence by himself. Therefore, we need
to add some comments on the practical implementation.

Testing condition (2) yields p-values for the hypothesis of independence. The perfor-
mance of our inference method depends heavily on how these p-values are used to decide
whether a linear model is accepted for one and only one of the directions. Our rule depends
on two parameters α and δ, the significance level and the gap, respectively. We say that an
ARMA model is accepted for one direction but not the other if the p-value for the direction
under consideration is above α and it is below α for the converse direction and, moreover,
the gap is at least δ. By choosing a small value α and a large value δ one gets fewer deci-
sions but also the fraction of wrong classifications decreases. On 1180 empirical time series
from EEGs [8] we where able to classify around 82% correctly when the parameters are set
to yields decisions for about 4% of the time series. When decisions were made for a larger
fraction of time series, the number of correct answers still significantly exceeded chance
level. Qualitatively similar results were obtained for 200 time series from different areas,
like finance, physics, transportation, crime, production of goods, demography, economy,
neuroscience, and agriculture [9]. It thus seems that nature more often generates linearity in
forward than in backward time.

2 Physical Toy Model

Here we describe a physical model that suggests that the observed asymmetry is an im-
plication of generally accepted asymmetries between past and future. We assume that the
values Xt are observables of a classical physical system.3 For our toy model, we use only
two properties of physical models that we consider decisive for the argument:

(1) The state of a system is a point in some phase-space S that is a sub-manifold of R
n.

(2) The dynamical evolution of an isolated system is given by a family Mt of volume-
preserving bijections on S .

2Reference [19] chooses a different definition, but we have argued in [8] that it is equivalent to ours.
3Of course, such an embedding is hard to imagine for time series from stock markets, for instance. However,
other time series, e.g., EEG-data, are closer related to physical observables.
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Due to Liouville’s Theorem, the latter condition holds for the dynamics of all Hamil-
tonian systems, i.e., those that are energetically closed. Non-Hamiltonian dynamics occur
in physics only as the time-evolution of open system. Since we want to include all relevant
parts of the environment of the physical system under consideration we consider the joint
system as closed.

For simplicity, we restrict the attention to an AR(1) process:

Xt = φXt−1 + εt . (3)

We will now interpret Xt as a physical observable of a system S(0), whose state is changed
by interacting with its environment. The latter consists of an infinite collection of subsys-
tems S(j) with j ∈ Z \ {0}. Each subsystem is described by the real-valued observable Z(j).
Its value at time t is denoted by Z

(j)
t , hence Xt = Z

(0)
t , but we will keep the notation Xt

whenever its special status among the variables should be emphasized.
Then we define a joint time evolution by

Z
(0)

t+1 = γ11Z
(−1)
t + γ12Z

(0)
t , (4)

Z
(1)

t+1 = γ21Z
(−1)
t + γ22Z

(0)
t , (5)

Z
(j)

t+1 = Z
(j−1)
t for j �= 0,1. (6)

The dynamics thus is a concatenation of the map 	 on the variable pair (Z
(−1)
t ,Z

(0)
t ), given

by the entries γkl , with a shift propagating the state of subsystem S(j) to S(j+1).
The environment may be thought of as a beam of particles that approaches site S(0), in-

teracts with it, and disappears to infinity; we have discretized the propagation only to make
it compatible with the discrete stochastic process. The interaction is given by 	. The phase
space of the systems S(j) may be larger than one-dimensional, but we assume that the vari-
ables Z

(j)
t define the observables that are relevant for the interaction. To ensure conservation

of volume in the entire phase space, 	 needs to be volume-preserving, i.e. |det(	)| = 1.
Since our model should be interpreted as the discretization of a continuous time process we
assume 	 ∈ SL(2).

One checks easily that the above dynamical system generates for t > 0 the causal AR(1)-
process

Xt = γ12Xt−1 + εt with εt := γ11Z
(−1)

t−1 ,

if we impose the initial conditions

Z
(j)

0 i.i.d. with some distribution Q. (7)

Actually, it would be sufficient to impose independence only for the non-positive j , but later
it will be convenient to include also positive values j and assume that the whole ARMA
process has a starting time t = 0. This will make it easier to track the increase of statistical
dependence over time.

We will now show that, under generic conditions, the dynamics creates statistical depen-
dence between the subsystems. We will later see that this is the reason why the time-inverted
version of the above scenario would not be a reasonable physical model for the process
(X−t ). We need the following Lemma:

Lemma 2 (Dependence Created by Sequences of Adjacent Operations) Let 	 ∈ SL(2)

have non-diagonal and diagonal entries. Denote by 	
(n)

l,l+1 the embedding into the two-
dimensional subspaces of R

n that correspond to consecutive components l, l + 1 with
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l = 0, . . . , n − 1, i.e.,

	
(n)

l,l+1 := 1l−1 ⊕ 	 ⊕ 1n−l−1,

where 1m denotes the identity matrix in m dimensions. Let P be a non-Gaussian distribution
on R. Then the application of

	
(n)

0,1 ◦ 	
(n)

2,3 ◦ · · · ◦ 	
(n)

n−2,n−1

to R
n turns the product distribution P ⊗n into a non-product distribution.

Proof Due to Lemma 1, 	(n)

n−2,n−1 generates dependence between the last and the second last
component. Since none of the other operations acts on the last component, the dependence
between the last component and the joint system given by the remaining n − 2 components,
is preserved. �

To apply Lemma 2 to our system, it is sufficient to focus on the region of the chain on
which the statistical dependence has been generated after the time t under consideration. It
is given by

S0,...,t := S(0) × S(1) × · · · × S(t). (8)

Its state at time t can be found by using the variable transformation

(Z
(0)
t ,Z

(1)
t , . . . ,Z

(t)
t ) = (	

(t+1)

0,1 ◦ 	
(t+1)

1,2 ◦ · · · ◦ 	
(t+1)

t−1,t )(Z
(−j)

0 , . . . ,Z
(0)

0 ), (9)

and all the other sites are still jointly independent and independent of region (8). If the rela-
tion between Xt and Xt+1 is non-trivial (i.e., neither deterministic nor independent) 	 must
have diagonal and non-diagonal entries, which implies that the state given by the left side
of (9) is not a product state.

The following argument shows that the dependence between the outgoing particles is
closely linked to the irreversibility of the scenario: The fact that the time evolution gener-
ates a causal AR(1)-process is ensured by independence of Z

(0)
t ,Z

(−1)
t ,Z

(−2)
t , . . . describing

the incoming particles. If the variables Z
(1)
t ,Z

(2)
t , . . . are also independent we can run the

process backwards to induce the causal AR(1)-process (X−t ). However, by virtue of Theo-
rem 1, this is only possible for (Xt ) Gaussian.

Summarizing the essential part of the argument, the joint distribution PXt ,Xt+1 has a lin-
ear model from Xt to Xt+1 but not vice versa because the incoming particles are jointly
independent but the outgoing particles are dependent. Now we show a quantitative relation
between the non-linearity in backward time direction and the generated dependence. To this
end, we measure the strength of the statistical dependence of the joint system as follows. If
a system consists of finitely many subsystems its multi-information is defined by

I (Y1, . . . , Yk) :=
k∑

j=1

H(Yj ) − H(Y1, . . . , Yk).

Here, H(.) is the differential Shannon entropy [20]

H(Y1, . . . , Yn) := −
∫

p(y1, . . . , yn) logp(y1, . . . , yn)dy1 · · ·dyn,
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where p(y1, . . . , yn) denotes the joint probability density of the random variables Y1, . . . , Yn.
For k = 2, the multi-information coincides with the usual mutual information I (Y1 : Y2) =
H(Y1)+H(Y2)−H(Y1, Y2). Multi-information is always non-negative and zero if and only
if the variables are jointly independent. For our infinite system we define multi-information
as follows:

Definition 3 (Multi-information) The multi-information of the joint system of all S(j) at
time t is defined by

I (t) := lim
m→∞ I (Z

(−m)
t ,Z

(−m+1)
t , . . . ,Z

(m)
t ),

whenever the limit exists.

If the sum of the entropies of all subsystems is interpreted as a coarse-grained entropy,
multi-information measures the difference between coarse-grained and non-coarse-grained
entropy. The increase of multi-information in time can thus be interpreted as a phenomeno-
logical increase of entropy. Here, it can easily be computed:

Lemma 3 (Multi-information as Pairwise Information) Let the initial state of S−∞...∞ sat-
isfy the conditions (7) and the time evolution be given by (4) to (6) with 	 ∈ SL(2). Then the
generation of multi-information per time step is given by

I (t) − I (t − 1) = I (Z
(0)
t : Z(1)

t ) ∀t ≥ 0.

Proof We consider the state of the system S0,...,t at time t that we would have obtained if the
interaction had been inactive (i.e., 	 = 1) during the last time step. This state is described
by the transformed variables

(Z̃
(0)
t , . . . , Z̃

(t)
t ) := (	

(t+1)

1,2 ◦ 	
(t+1)

2,3 ◦ · · · ◦ 	
(t+1)

t−1,t )(Z
(−t)

0 , . . . ,Z
(0)

0 ). (10)

We have

I (Z̃
(0)
t , . . . , Z̃

(t)
t ) = I (t − 1),

because the shift part of the dynamics is irrelevant. Hence,

I (t) − I (t − 1) = I (Z
(0)
t , . . . ,Z

(t)
t ) − I (Z̃

(0)
t , . . . , Z̃

(t)
t ), (11)

since the systems S(j) with j outside the interval [0, . . . , t] do not contribute to the overall
multi-information. The true state of system S0,...,t at time t is, by assumption, given by
additionally applying 	

(t)

0,1 to (10), i.e.,

(Z
(0)
t , . . . ,Z

(t)
t ) = 	

(t)

0,1(Z̃
(0)
t , . . . , Z̃

(t)
t ).

We thus obtain

I (t) − I (t − 1) =
t∑

j=0

H(Z
(j)
t ) − H(Z1, . . . ,Z

(t)
t )

−
(

t∑

j=0

H(Z̃
(j)
t ) + H(Z̃1, . . . , Z̃

(t)
t )

)
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=
t∑

j=0

H(Z
(j)
t ) −

t∑

j=0

H(Z̃
(j)
t )

=
2∑

j=0

H(Z
(j)
t ) − H(Z

(0)
t ,Z

(1)
t )

−
(

2∑

j=0

H(Z̃
(j)
t ) − H(Z̃

(0)
t , Z̃

(1)
t )

)

= I (Z
(0)
t : Z(1)

t ) − I (Z̃
(0)
t : Z̃(1)

t )

= I (Z
(0)
t : Z(1)

t ),

where the second equality holds because 	
(t)

0,1 preserves the joint entropy of S0,...,t and the
third one holds because it also preserves all the marginal entropies for j �= 0,1 and the joint
entropy of S0,1. The last equality is due to the independence of Z̃

(0)
t and Z̃

(1)
t . �

To show the link between the amount of generated multi-information and the non-
linearity of the backward process, we measure the latter as follows.

Definition 4 (Measuring Non-linearity of Joint Distributions) Let L be the set of joint dis-
tributions RX,Y that admit a linear model from X to Y . Set

D(PX,Y ||L) := inf
RX,Y ∈L

D(PX,Y ||RX,Y ),

where the infimum is taken over all distributions in L. Here, D denotes the relative entropy
distance [20], defined as follows. If P,Q are arbitrary distributions with strictly positive
densities p and q it is given by

D(P ||Q) :=
∫

p(x) log
p(x)

q(x)
dx.

Then we have:

Theorem 2 (Non-linearity of Backwards Model and Multi-inf.) Let (Xt ) be a causal AR(1)-
process and I (t) the multi-information of all the “particles” in the toy model given by (4)
to (6). Then,

I (t) − I (t − 1) ≥ D(PXt ,Xt−1 ||L).

Proof Assume Xt and Xt−1 are neither linear dependent nor statistically independent be-
cause otherwise the bound becomes trivial since we had PXt ,Xt−1 ∈ L. The idea of the proof
is the following: we figure out how much the joint distribution of Xt and Xt−1 has to be
modified to admit a linear model from Xt to Xt−1. We have already argued that the en-
tire stochastic process would admit a linear model in backward direction if all the outgoing
particles were statistically independent. To obtain a linear model only from Xt to Xt−1 by
reversing the physical toy model it is sufficient to replace the systems with statistically in-
dependent ones. More precisely, we replace P , the joint distribution of

. . .Z−1
t ,Z0

t ,Z
1
t ,Z

2
t , . . .
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by the product distribution with the same marginals, which we shall denote by P̃ . Then
we check how this changes the joint distribution of Xt and Xt−1. The inverse dynamics
t 
→ t − 1 is given by

Z
(−1)

t−1 = γ̃11Z
(0)
t + γ̃12Z

(1)
t , (12)

Z
(0)

t−1 = γ̃21Z
(0)
t + γ̃22Z

(1)
t , (13)

Z
(j)

t−1 = Z
(j−1)
t for j �= 0,−1, (14)

where γ̃kl denote the entries of 	−1.
Since Xt = Z

(0)
t and

Xt−1 = γ̃21Z
(0)
t + γ̃22Z

(1)
t , (15)

which is implied by (12), the pair (Z
(0)
t ,Z

(1)
t ) and (Xt ,Xt−1) span the same probability space

(note that both coefficients in (15) are non-zero because we have excluded the cases of linear
dependency and statistical independence). Hence P̃

Z
(0)
t ,Z

(1)
t

induces by variable transforma-

tion a distribution P̃Xt ,Xt−1 satisfying

D(PXt ,Xt−1 ||P̃Xt ,Xt−1) = D(P
Z

(0)
t ,Z

(1)
t

||P̃
Z

(0)
t ,Z

(1)
t

).

The left hand side is an upper bound for the distance of PXt−1,Xt to a linear model from Xt

to Xt−1 because P̃Xt ,Xt−1 admits such a model, namely

Xt−1 = γ̃21Xt + γ̃22Z
(1)
t .

Thus, we have

D(PXt ,Xt−1 ||L) ≤ D(P
Z

(0)
t ,Z

(1)
t

||P̃
Z

(0)
t ,Z

(1)
t

). (16)

The right-hand side of (16) is equal to the mutual information I (Z
(1)
t : Z(0)

t ) since this mutual
information is known [20] to equal the relative entropy distance from P

Z
(0)
t ,Z

(1)
t

to the product
distribution with the same marginals. It follows, by Lemma 3, that the right-hand side of (16)
is equal to I (t) − I (t − 1), and so (16) is equivalent to the formula to be proved. �

If Xt is Gaussian, the stochastic process need not generate multi-information: The easiest
case is where all Z

(j)

0 are independent identically distributed Gaussians with zero mean and
	 rotates the space R

2 by some angle α. Since 	 preserves isotropic Gaussians in R
2, the

dynamics induced on S−∞···∞ leaves the entire joint state invariant. This model can induce
any stationary Gaussian AR(1)-process, because then |φ|2 ≤ 1 in (3) and we can thus write

Xt+1 = sinαXt + εt

with εt := cosαZ
(−1)
t .

Note that Gaussian processes can also be realized by a system that does generate multi-
information. For instance,

	 :=
(

cosα sinα

0 (cosα)−1

)
.
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induces the same process (Xt ) as a rotation by the angle α, but induces dependent outgo-
ing particles because 	T 	 is non-diagonal. This way, one can easily generate a station-
ary Gaussian process (which is automatically time-symmetric) that generates entropy. This
shows that the quantitative correspondence between entropy production and time-inversion
asymmetry of (Xt ) can only consist of lower bounds.

3 Interpretation

We first discuss the interpretation of the Gaussian case. To show an even closer link to ther-
modynamics, we recall that Gaussian distributions often occur in the context of thermal
equilibrium states. For instance, the variable position and momentum of a harmonic oscilla-
tor are Gaussian distributed in thermal equilibrium. The case where all Z

(0)

0 are identically
independently distributed Gaussians and 	 is a rotation (which preserves the joint state) can
therefore be interpreted as thermal equilibrium dynamics. The fact that the joint distribu-
tion PXt ,Xt+1 coincides with PXt ,Xt−1 is exactly the symmetry imposed by the well-known
detailed-balance condition [21] that holds for every Gibbs state.

In order to interpret the scenario in the non-Gaussian case as entropy production, we
note that the sum of the marginal entropies of the subsystems increase linearly in time.
The fact that the joint Shannon entropy remains constant loses more and more its practical
relevance since it requires complex joint operations to undo all the dependence. From a
coarse-grained point of view, the entropy increases at every step if we interpret the sum of
marginal entropies as coarse-grained entropy. Since the joint entropy remains constant, the
increase of multi-information then coincides with the coarse-grained entropy production.

In our experiments we found several examples of time series that could better be fitted
with a causal ARMA model from the future to the past than vice versa, even though this
was only a minority of those for which a decision was made. Of course, we do not want
to suggest that the physical systems corresponding to those negative examples violate the
second law. To avoid such misconceptions we discuss which assumptions could be violated
to generate time series that admit non-Gaussian ARMA models in the wrong direction.

To this end, we list the requirements that jointly make the time-inverted scenario of the
above dynamics extremely unlikely:

1. The “incoming particles” (which correspond to the outgoing ones in the original scenario)
and S(0) must be statistically dependent.4

2. The coupling between S(0) and the incoming particles must be chosen such that it exactly
removes the statistical dependence of the incoming particles. There is nothing wrong
with dependent particles approaching S(0), and a coupling that destroys dependences
between the particles and S(0) while creating additional dependence with a third party.
However, removing statistical dependence in a closed system requires transformations
that are specifically adapted to the kind of dependence that is present. In other words, the
coupling between S(0) and the incoming particles had to be one of the “few” linear maps
	̃ ∈ SL(2) needed for undoing the operation that created the statistical dependence of the
incoming particles.

4This indicates that they have already been interacting earlier, cf. Reichenbach’s principle of the common
cause [1], which is meanwhile one of the cornerstones of causal inference.
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We want to be more explicit about the last item and recall that the joint state of S0,...,t at
time t is given by

(	
(t+1)

0,1 ◦ 	
(t+1)

1,2 ◦ · · · ◦ 	
(t+1)

t−1,t )Q
⊗(t+1).

We now run the time inverted dynamics (12)–(13) (starting from t and ending at 0) to this
input using some arbitrary 	̃ ∈ SL(2). The state of S−t,...,0 then reads

(	̂
(t+1)

0,1 ◦ 	̂
(t+1)

1,2 ◦ · · · ◦ 	̂
(t+1)

t−1,t )Q
⊗(t+1),

where we have defined

	̂ := 	̃ ◦ 	.

Due to Lemma 2, this can only be a product state if 	̂ has only diagonal or only off-diagonal
entries (or if Q is Gaussian). This shows that the statistical dependence of the incoming
particles can be removed by 	̃ only if 	̃ is adjusted to the specific form of this dependence
(whose characteristic feature is the map 	 that has created the dependence from independent
states in the remote past).

This kind of mutual adjustment between mechanism and incoming state is unlikely. Sim-
ilar arguments have been used in causal inference recently [22, 23]. According to the lan-
guage used there, the incoming state and the coupling share algorithmic information, which
indicates that the incoming state and the coupling have not been chosen independently.5

To generate a process (Xt )t∈Z that admits a linear model in backward direction thus
requires a different class of dynamical models. For instance, the joint dynamics could be
non-linear.

4 Conclusions and Discussion

We have discussed time series that admit a causal ARMA model in forward direction but
require non-linear transitions in backward directions to remain causal. Previous experiments
verified that some empirical time series indeed show this asymmetry. Here we have related
this asymmetry to the thermodynamic arrow of time.

To this end, we have presented a toy model of a physical system coupled to an infinite
environment where the asymmetry is due to the production of entropy (if the joint system is
considered from a coarse-grained perspective).

The essential feature of the irreversible process studied here is that the linearity of the
joint dynamics is passed down to the forward but not to the backward conditionals. Of
course, not every physical dynamics is linear, but the result suggests a more general state-
ment for irreversible processes: there seems to be a sense in which the simplicity of the joint
dynamics of system and environment is passed down to the forward conditionals of the sys-
tem but not the backward conditionals. To study for which notions of simplicity, other than
linearity, this holds has to be left to the future. Results of this kind would provide a better
understanding of more subtle time-asymmetries in physics than the obvious implications of
second law. This would be particularly relevant for stochastic processes because they usually
describe the state of a system that strongly interacts with its environment and there is thus
no simple entropy criterion to distinguish between the true and the wrong time direction.

5Note that the thermodynamic relevance of algorithmic information has also been pointed out in [24].
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Understanding asymmetries between past of future also helps in understanding asymme-
tries between cause and effect, which is relevant for the field of causal inference: [25–27]
developed algorithms that inferred whether X causes Y or Y causes X for just two ob-
served random variables X and Y . Their approaches where based on the observation that
the conditional P (effect|cause) is usually simpler then P (cause|effect), where
different notions of simplicity were used. It should be emphasized that this kind of rea-
soning cannot be justified by referring to Occam’s Razor only, i.e., the principle to pre-
fer simple models if possible. The point that deserves our attention is not why science
should look for simple laws. Instead, we are asking why we should expect that causal
conditionals P (effect|cause) are simple instead of expecting non-causal conditionals
P (cause|effect) to be simple. Some first explanations were provided by observations in
[28, 29]. These papers discuss two interacting physical systems described by random vari-
ables X and Y where the causal influence was mainly from X to Y and the backaction from
Y to X was negligible. Then they show that P (Y |X) is simple and P (X|Y ) complex for
the models under consideration. References [28, 29] as well as the present paper, therefore
explore the thermodynamic foundation of a novel type of causal inference rules.

Acknowledgements This work has been inspired by discussions with Armen Allahverdyan in a meeting
that was part of the VW-project “Quantum thermodynamics: energy and information flow at the nanoscale”.
Thanks to Jonas Peters for comments on an early draft.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Reichenbach, H.: The Direction of Time. University of California Press, Berkley (1956). Dover, New
York (1999)

2. Penrose, O., Percival, I.: The direction of time. Proc. Phys. Soc. 79, 605–616 (1962)
3. Balian, R.: From Microphysics to Macrophysics. Springer, Berlin (1992)
4. Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Ox Bow Press, Woodbridge (1902)
5. Jaynes, E.T.: Gibbs vs. Boltzmann entropies. Am. J. Phys. 33, 391 (1965)
6. Lebowitz, J.: Macroscopic dynamics, time’s arrow and Boltzmann entropy. Physica A 194, 1–27 (1993)
7. Wallace, C.: Statistical and Inductive Inference by Minimum Message Length. Springer, Berlin (2005)
8. Peters, J., Janzing, D., Gretton, A., Schölkopf, B.: Detecting the direction of causal time

series. In: Proceedings of the International Conference on Machine Learning, Montreal.
ACM International Conference Proceeding Series, vol. 382, pp. 801–808. ACM, New York
(2009). http://www.cs.mcgill.ca/~icml2009/papers/503.pdf and http://portal.acm.org/citation.cfm?doid=
1553374.1553477

9. Peters, J., Janzing, D., Gretton, A., Schölkopf, B.: Kernel methods for detecting the direction of time
series. In: Proceedings of the 32nd Annual Conference of the German Classification Society (GfCKI
2008), pp. 1–10. Springer, Berlin (2009)

10. Maes, C., Redig, F., Van Moffaert, A.: On the definition of entropy production via examples. J. Math.
Phys. 41, 1528–1554 (2000)

11. Gallavotti, G., Cohen, E.: Dynamical ensembles and nonequilibrium statistical mechanics. Phys. Rev.
Lett. 74, 2694–2697 (1995)

12. Horowitz, E., Sahni, S.: Fundamentals of Data Structures. Computer Science Press, New York (1976)
13. Maes, C., Netocný, K.: Time reversal and entropy. J. Stat. Phys. 110(1–2), 269–309 (2003)
14. Chazottes, J.-R., Redig, F.: Testing the irreversibility of a Gibbsian process via hitting and return times.

Nonlinearity 18(18), 2477–2489 (2005)
15. Darmois, G.: Analyse générale des liaisons stochastiques. Rev. Inst. Int. Stat. 21, 2–8 (1953)
16. Skitovic, V.: Linear combinations of independent random variables and the normal distribution law. Sel.

Transl. Math. Stat. Probab. 2, 211–228 (1962)

http://www.cs.mcgill.ca/~icml2009/papers/503.pdf
http://portal.acm.org/citation.cfm?doid=1553374.1553477
http://portal.acm.org/citation.cfm?doid=1553374.1553477


On the Entropy Production of Time Series with Unidirectional Linearity 779

17. Kano, Y., Shimizu, S.: Causal inference using nonnormality. In: Proceedings of the International Sympo-
sium on Science of Modeling, the 30th Anniversary of the Information Criterion, Tokyo, Japan, pp. 261–
270 (2003)

18. Shimizu, S., Hyvärinen, A., Kano, Y., Hoyer, P.O.: Discovery of non-Gaussian linear causal models
using ICA. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, Edinburgh,
UK, pp. 526–533 (2005)

19. Brockwell, P., Davis, R.: Time Series: Theory and Methods. Springer, Berlin (1991)
20. Cover, T., Thomas, J.: Elements of Information Theory. Wileys Series in Telecommunications. Wiley,

New York (1991)
21. Tolman, R.: The Principles of Statistical Mechanics. Oxford University Press, Oxford (1938)
22. Lemeire, J., Dirkx, E.: Causal models as minimal descriptions of multivariate systems.

http://parallel.vub.ac.be/~jan/ (2006)
23. Janzing, D., Schölkopf, B.: Causal inference using the algorithmic Markov condition. http://arxiv.org/

abs/0804.3678 (2008)
24. Zurek, W.: Algorithmic randomness and physical entropy. Phys Rev A 40(8), 4731–4751 (1989)
25. Hoyer, P., Janzing, D., Mooij, J., Peters, J., Schölkopf, B.: Nonlinear causal discovery with additive noise

models. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Proceedings of the Conference
on Neural Information Processing Systems (NIPS), Vancouver, Canada, 2008. MIT Press, Cambridge
(2009). http://books.nips.cc/papers/files/nips21/NIPS2008_0266.pdf

26. Mooij, J., Janzing, D., Peters, J., Schölkopf, B.: Regression by dependence minimization and its ap-
plication to causal inference. In: Proceedings of the International Conference on Machine Learn-
ing, Montreal. ACM International Conference Proceeding Series, vol. 382, pp. 745–752. ACM,
New York (2009) http://www.cs.mcgill.ca/~icml2009/papers/279.pdf and http://portal.acm.org/citation.
cfm?id=1553374.1553470

27. Zhang, K., Hyvärinen, A.: On the identifiability of the post-nonlinear causal model. In: 25th Conference
on Uncertainty in Artificial Intelligence, Montreal, Canada (2009)

28. Janzing, D.: On causally asymmetric versions of Occam’s Razor and their relation to thermodynamics.
http://arxiv.org/abs/0708.3411v2 (2008)

29. Allahverdyan, A., Janzing, D.: Relating the thermodynamic arrow of time to the causal arrow. J. Stat.
Mech. P04001 (2008)

http://parallel.vub.ac.be/~jan/
http://arxiv.org/abs/0804.3678
http://arxiv.org/abs/0804.3678
http://books.nips.cc/papers/files/nips21/NIPS2008_0266.pdf
http://www.cs.mcgill.ca/~icml2009/papers/279.pdf
http://portal.acm.org/citation.cfm?id=1553374.1553470
http://portal.acm.org/citation.cfm?id=1553374.1553470
http://arxiv.org/abs/0708.3411v2

	On the Entropy Production of Time Series with Unidirectional Linearity
	Abstract
	Unidirectional Linearity in Time Series
	Physical Toy Model
	Interpretation
	Conclusions and Discussion
	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


